Open Neural Network Exchange (ONNX,开放神经网络交换) 格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移

Torch 所定义的模型为动态图,其前向传播是由类方法定义和实现的

但是 Python 代码的效率是比较底下的,试想把动态图转化为静态图,模型的推理速度应当有所提升

Torch 框架中,torch.onnx.export 可以将父类为 nn.Module 的模型导出到 onnx 文件中,最重要的有三个参数:

  • model:父类为 nn.Module 的模型
  • args:传入 model 的 forward 方法的变量列表,类型应为 tuple
  • f:onnx 文件名称的字符串
import torch
from torchvision.models import resnet50
file = 'resnet.onnx'
# 声明模型
resnet = resnet50(pretrained=False).eval()
image = torch.rand([1, 3, 224, 224])
# 导出为 onnx 文件
torch.onnx.export(resnet, (image,), file)

onnx 文件可被 Netron 打开,以查看模型结构

Torch 模型 onnx 文件的导出和调用

基本用法

要在 Python 中运行 onnx 模型,需要下载 onnxruntime

# 选其一即可
pip install onnxruntime        # CPU 版本
pip install onnxruntime-gpu    # GPU 版本

推理时需要借助其中的 InferenceSession,其中较为重要的实例方法有:

  • get_inputs():得到输入变量的列表 (变量属性:name、shape、type)
  • get_outputs():得到输入变量的列表 (变量属性:name、shape、type)
  • run(output_names, input_feed):输入变量为 numpy.ndarray (注意 dtype 应为 float32),使用模型推理并返回输出

可得出 onnx 模型的基本用法:

import onnxruntime as ort
import numpy as np
file = 'resnet.onnx'
# 找到 GPU / CPU
provider = ort.get_available_providers()[
    1 if ort.get_device() == 'GPU' else 0]
print('设备:', provider)
# 声明 onnx 模型
model = ort.InferenceSession(file, providers=[provider])
# 参考: ort.NodeArg
for node_list in model.get_inputs(), model.get_outputs():
    for node in node_list:
        attr = {'name': node.name,
                'shape': node.shape,
                'type': node.type}
        print(attr)
    print('-' * 60)
# 得到输入、输出结点的名称
input_node_name = model.get_inputs()[0].name
ouput_node_name = [node.name for node in model.get_outputs()]
image = np.random.random([1, 3, 224, 224]).astype(np.float32)
print(model.run(output_names=ouput_node_name,
                input_feed={input_node_name: image}))

高级 API

为了简化使用步骤,使用类进行封装:

class Onnx_Module(ort.InferenceSession):
    ''' onnx 推理模型
        provider: 优先使用 GPU'''
    provider = ort.get_available_providers()[
        1 if ort.get_device() == 'GPU' else 0]
    def __init__(self, file):
        super(Onnx_Module, self).__init__(file, providers=[self.provider])
        # 参考: ort.NodeArg
        self.inputs = [node_arg.name for node_arg in self.get_inputs()]
        self.outputs = [node_arg.name for node_arg in self.get_outputs()]
    def __call__(self, *arrays):
        input_feed = {name: x for name, x in zip(self.inputs, arrays)}
        return self.run(self.outputs, input_feed)

在 Torch 中,对于卷积神经网络 model 与图像 image,推理的代码为 "model(image)",而使用这个封装的类也是类似:

import numpy as np
file = 'resnet.onnx'
model = Onnx_Module(file)
image = np.random.random([1, 3, 224, 224]).astype(np.float32)
print(model(image))

为了方便观察 Torch 模型与 onnx 模型的速度差异,同时检查两个模型的输出是否一致,又编写了 test 函数

test 方法的参数与 torch.onnx.export 一致,其基本流程为:

  • 得到 Torch 模型的输出,并 print 推断耗时
  • 将 Torch 模型导出为 onnx 文件,将输入变量中的 torch.tensor 转化为 numpy.ndarray
  • 初始化 onnx 模型,得到 onnx 模型的输出,并 print 推断耗时
  • 计算 Torch 模型与 onnx 模型输出的绝对误差的均值
  • 将 onnx 模型 return
class Timer:
    repeat = 3
    def __new__(cls, fun, *args, **kwargs):
        import time
        start = time.time()
        for _ in range(cls.repeat): fun(*args, **kwargs)
        cost = (time.time() - start) / cls.repeat
        return cost * 1e3  # ms
class Onnx_Module(ort.InferenceSession):
    ''' onnx 推理模型
        provider: 优先使用 GPU'''
    provider = ort.get_available_providers()[
        1 if ort.get_device() == 'GPU' else 0]
    def __init__(self, file):
        super(Onnx_Module, self).__init__(file, providers=[self.provider])
        # 参考: ort.NodeArg
        self.inputs = [node_arg.name for node_arg in self.get_inputs()]
        self.outputs = [node_arg.name for node_arg in self.get_outputs()]
    def __call__(self, *arrays):
        input_feed = {name: x for name, x in zip(self.inputs, arrays)}
        return self.run(self.outputs, input_feed)
    @classmethod
    def test(cls, model, args, file, **export_kwargs):
        # 测试 Torch 的运行时间
        torch_output = model(*args).data.numpy()
        print(f'Torch: {Timer(model, *args):.2f} ms')
        # model: Torch -> onnx
        torch.onnx.export(model, args, file, **export_kwargs)
        # data: tensor -> array
        args = tuple(map(lambda tensor: tensor.data.numpy(), args))
        onnx_model = cls(file)
        # 测试 onnx 的运行时间
        onnx_output = onnx_model(*args)
        print(f'Onnx: {Timer(onnx_model, *args):.2f} ms')
        # 计算 Torch 模型与 onnx 模型输出的绝对误差
        abs_error = np.abs(torch_output - onnx_output).mean()
        print(f'Mean Error: {abs_error:.2f}')
        return onnx_model

对于 ResNet50 而言,Torch 模型的推断耗时为 172.67 ms,onnx 模型的推断耗时为 36.56 ms,onnx 模型的推断耗时仅为 Torch 模型的 21.17%

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。