Diffusion扩散模型学习1——Pytorch搭建DDPM利用深度卷积神经网络实现图片生成

  • 学习前言
  • 源码下载地址
  • 网络构建
    • 一、什么是Diffusion
      • 1、加噪过程
      • 2、去噪过程
    • 二、DDPM网络的构建(Unet网络的构建)
    • 三、Diffusion的训练思路
  • 利用DDPM生成图片
    • 一、数据集的准备
    • 二、数据集的处理
    • 三、模型训练

学习前言

我又死了我又死了我又死了!
Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成

源码下载地址

https://github.com/bubbliiiing/ddpm-pytorch

喜欢的可以点个star噢。

网络构建

一、什么是Diffusion

Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成
如上图所示。DDPM模型主要分为两个过程:
1、Forward加噪过程(从右往左),数据集的真实图片中逐步加入高斯噪声,最终变成一个杂乱无章的高斯噪声,这个过程一般发生在训练的时候。加噪过程满足一定的数学规律。
2、Reverse去噪过程(从左往右),指对加了噪声的图片逐步去噪,从而还原出真实图片,这个过程一般发生在预测生成的时候。尽管在这里说的是加了噪声的图片,但实际去预测生成的时候,是随机生成一个高斯噪声来去噪。去噪的时候不断根据
X
t
X_t
Xt
的图片生成
X
t

1
X_{t-1}
Xt1
的噪声,从而实现图片的还原。

1、加噪过程

Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成
Forward加噪过程主要符合如下的公式:

x
t
=
α
t
x
t

1
+
1

α
t
z
1
x_t=\sqrt{\alpha_t} x_{t-1}+\sqrt{1-\alpha_t} z_{1}
xt=αtxt1+1αtz1

其中
α
t
\sqrt{\alpha_t}
αt
是预先设定好的超参数,被称为Noise schedule,通常是小于1的值,在论文中
α
t
\alpha_t
αt
的值从0.9999到0.998。
ϵ
t

1

N
(
,
1
)
\epsilon_{t-1} \sim N(0, 1)
ϵt1N(0,1)
是高斯噪声。由公式(1)迭代推导。


x
t
=
a
t
(
a
t

1
x
t

2
+
1

α
t

1
z
2
)
+
1

α
t
z
1
=
a
t
a
t

1
x
t

2
+
(
a
t
(
1

α
t

1
)
z
2
+
1

α
t
z
1
)
x_t=\sqrt{a_t}\left(\sqrt{a_{t-1}} x_{t-2}+\sqrt{1-\alpha_{t-1}} z_2\right)+\sqrt{1-\alpha_t} z_1=\sqrt{a_t a_{t-1}} x_{t-2}+\left(\sqrt{a_t\left(1-\alpha_{t-1}\right)} z_2+\sqrt{1-\alpha_t} z_1\right)
xt=at(at1xt2+1αt1z2)+1αtz1=atat1xt2+(at(1αt1)z2+1αtz1)

其中每次加入的噪声都服从高斯分布
z
1
,
z
2
,


N
(
,
1
)
z_1, z_2, \ldots \sim \mathcal{N}(0, 1)
z1,z2,N(0,1)
,两个高斯分布的相加高斯分布满足公式:
N
(
,
σ
1
2
)
+
N
(
,
σ
2
2
)

N
(
,
(
σ
1
2
+
σ
2
2
)
)
\mathcal{N}\left(0, \sigma_1^2 \right)+\mathcal{N}\left(0, \sigma_2^2 \right) \sim \mathcal{N}\left(0,\left(\sigma_1^2+\sigma_2^2\right) \right)
N(0,σ12)+N(0,σ22)N(0,(σ12+σ22))
,因此,得到
x
t
x_t
xt
的公式为:

x
t
=
a
t
a
t

1
x
t

2
+
1

α
t
α
t

1
z
2
x_t = \sqrt{a_t a_{t-1}} x_{t-2}+\sqrt{1-\alpha_t \alpha_{t-1}} z_2
xt=atat1xt2+1αtαt1z2

因此不断往里面套,就能发现规律了,其实就是累乘
可以直接得出
x
x_0
x0

x
t
x_t
xt
的公式:

x
t
=
α
t

x
+
1

α
t

z
t
x_t=\sqrt{\overline{\alpha_t}} x_0+\sqrt{1-\overline{\alpha_t}} z_t
xt=αtx0+1αtzt

其中
α
t

=

i
t
α
i
\overline{\alpha_t}=\prod_i^t \alpha_i
αt=itαi
,这是随Noise schedule设定好的超参数,
z
t

1

N
(
,
1
)
z_{t-1} \sim N(0, 1)
zt1N(0,1)
也是一个高斯噪声。通过上述两个公式,我们可以不断的将图片进行破坏加噪。

2、去噪过程

Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成
反向过程就是通过估测噪声,多次迭代逐渐将被破坏的
x
t
x_t
xt
恢复成
x
x_0
x0
,在恢复时刻,我们已经知道的是
x
t
x_t
xt
,这是图片在
t
t
t
时刻的噪声图。一下子从
x
t
x_t
xt
恢复成
x
x_0
x0
是不可能的,我们只能一步一步的往前推,首先从
x
t
x_t
xt
恢复成
x
t

1
x_{t-1}
xt1
。根据贝叶斯公式,已知
x
t
x_t
xt
反推
x
t

1
x_{t-1}
xt1


q
(
x
t

1

x
t
,
x
)
=
q
(
x
t

x
t

1
,
x
)
q
(
x
t

1

x
)
q
(
x
t

x
)
q\left(x_{t-1} \mid x_t, x_0\right)=q\left(x_t \mid x_{t-1}, x_0\right) \frac{q\left(x_{t-1} \mid x_0\right)}{q\left(x_t \mid x_0\right)}
q(xt1xt,x0)=q(xtxt1,x0)q(xtx0)q(xt1x0)

右边的三个东西都可以从x_0开始推得到:

q
(
x
t

1

x
)
=
a
ˉ
t

1
x
+
1

a
ˉ
t

1
z

N
(
a
ˉ
t

1
x
,
1

a
ˉ
t

1
)
q\left(x_{t-1} \mid x_0\right)=\sqrt{\bar{a}_{t-1}} x_0+\sqrt{1-\bar{a}_{t-1}} z \sim \mathcal{N}\left(\sqrt{\bar{a}_{t-1}} x_0, 1-\bar{a}_{t-1}\right)
q(xt1x0)=aˉt1x0+1aˉt1zN(aˉt1x0,1aˉt1)


q
(
x
t

x
)
=
a
ˉ
t
x
+
1

α
ˉ
t
z

N
(
a
ˉ
t
x
,
1

α
ˉ
t
)
q\left(x_t \mid x_0\right) = \sqrt{\bar{a}_t} x_0+\sqrt{1-\bar{\alpha}_t} z \sim \mathcal{N}\left(\sqrt{\bar{a}_t} x_0 , 1-\bar{\alpha}_t\right)
q(xtx0)=aˉtx0+1αˉtzN(aˉtx0,1αˉt)


q
(
x
t

x
t

1
,
x
)
=
a
t
x
t

1
+
1

α
t
z

N
(
a
t
x
t

1
,
1

α
t
)
q\left(x_t \mid x_{t-1}, x_0\right)=\sqrt{a_t} x_{t-1}+\sqrt{1-\alpha_t} z \sim \mathcal{N}\left(\sqrt{a_t} x_{t-1}, 1-\alpha_t\right) \\
q(xtxt1,x0)=atxt1+1αtzN(atxt1,1αt)

因此,由于右边三个东西均满足正态分布,
q
(
x
t

1

x
t
,
x
)
q\left(x_{t-1} \mid x_t, x_0\right)
q(xt1xt,x0)
满足分布如下:


exp

(

1
2
(
(
x
t

α
t
x
t

1
)
2
β
t
+
(
x
t

1

α
ˉ
t

1
x
)
2
1

α
ˉ
t

1

(
x
t

α
ˉ
t
x
)
2
1

α
ˉ
t
)
)
\propto \exp \left(-\frac{1}{2}\left(\frac{\left(x_t-\sqrt{\alpha_t} x_{t-1}\right)^2}{\beta_t}+\frac{\left(x_{t-1}-\sqrt{\bar{\alpha}_{t-1}} x_0\right)^2}{1-\bar{\alpha}_{t-1}}-\frac{\left(x_t-\sqrt{\bar{\alpha}_t} x_0\right)^2}{1-\bar{\alpha}_t}\right)\right)
exp(21(βt(xtαtxt1)2+1αˉt1(xt1αˉt1x0)21αˉt(xtαˉtx0)2))

把标准正态分布展开后,乘法就相当于加,除法就相当于减,把他们汇总
接下来继续化简,咱们现在要求的是上一时刻的分布


exp

(

1
2
(
(
x
t

α
t
x
t

1
)
2
β
t
+
(
x
t

1

α
ˉ
t

1
x
)
2
1

α
ˉ
t

1

(
x
t

α
ˉ
t
x
)
2
1

α
ˉ
t
)
)
=
exp

(

1
2
(
x
t
2

2
α
t
x
t
x
t

1
+
α
t
x
t

1
2
β
t
+
x
t

1
2

2
α
ˉ
t

1
x
x
t

1
+
α
ˉ
t

1
x
2
1

α
ˉ
t

1

(
x
t

α
ˉ
t
x
)
2
1

α
ˉ
t
)
)
=
exp

(

1
2
(
(
α
t
β
t
+
1
1

α
ˉ
t

1
)
x
t

1
2

(
2
α
t
β
t
x
t
+
2
α
ˉ
t

1
1

α
ˉ
t

1
x
)
x
t

1
+
C
(
x
t
,
x
)
)
)
\begin{aligned} & \propto \exp \left(-\frac{1}{2}\left(\frac{\left(x_t-\sqrt{\alpha_t} x_{t-1}\right)^2}{\beta_t}+\frac{\left(x_{t-1}-\sqrt{\bar{\alpha}_{t-1}} x_0\right)^2}{1-\bar{\alpha}_{t-1}}-\frac{\left(x_t-\sqrt{\bar{\alpha}_t} x_0\right)^2}{1-\bar{\alpha}_t}\right)\right) \\ & =\exp \left(-\frac{1}{2}\left(\frac{x_t^2-2 \sqrt{\alpha_t} x_t x_{t-1}+\alpha_t x_{t-1}^2}{\beta_t}+\frac{x_{t-1}^2-2 \sqrt{\bar{\alpha}_{t-1}} x_0 x_{t-1}+\bar{\alpha}_{t-1} x_0^2}{1-\bar{\alpha}_{t-1}}-\frac{\left(x_t-\sqrt{\bar{\alpha}_t} x_0\right)^2}{1-\bar{\alpha}_t}\right)\right) \\ & =\exp \left(-\frac{1}{2}\left(\left(\frac{\alpha_t}{\beta_t}+\frac{1}{1-\bar{\alpha}_{t-1}}\right) x_{t-1}^2-\left(\frac{2 \sqrt{\alpha_t}}{\beta_t} x_t+\frac{2 \sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_{t-1}} x_0\right) x_{t-1}+C\left(x_t, x_0\right)\right)\right) \end{aligned}
exp(21(βt(xtαtxt1)2+1αˉt1(xt1αˉt1x0)21αˉt(xtαˉtx0)2))=exp(21(βtxt22αtxtxt1+αtxt12+1αˉt1xt122αˉt1x0xt1+αˉt1x021αˉt(xtαˉtx0)2))=exp(21((βtαt+1αˉt11)xt12(βt2αtxt+1αˉt12αˉt1x0)xt1+C(xt,x0)))

正态分布满足公式,
exp

(

(
x

μ
)
2
2
σ
2
)
=
exp

(

1
2
(
1
σ
2
x
2

2
μ
σ
2
x
+
μ
2
σ
2
)
)
\exp \left(-\frac{(x-\mu)^2}{2 \sigma^2}\right)=\exp \left(-\frac{1}{2}\left(\frac{1}{\sigma^2} x^2-\frac{2 \mu}{\sigma^2} x+\frac{\mu^2}{\sigma^2}\right)\right)
exp(2σ2(xμ)2)=exp(21(σ21x2σ22μx+σ2μ2))
,其中
σ
\sigma
σ
就是方差,
μ
\mu
μ
就是均值,配方后我们就可以获得均值和方差。

此时的均值为:
μ
~
t
(
x
t
,
x
)
=
α
t
(
1

α
ˉ
t

1
)
1

α
ˉ
t
x
t
+
α
ˉ
t

1
β
t
1

α
ˉ
t
x
\tilde{\mu}_t\left(x_t, x_0\right)=\frac{\sqrt{\alpha_t}\left(1-\bar{\alpha}_{t-1}\right)}{1-\bar{\alpha}_t} x_t+\frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1-\bar{\alpha}_t} x_0
μ~t(xt,x0)=1αˉtαt(1αˉt1)xt+1αˉtαˉt1βtx0
。根据之前的公式,
x
t
=
α
t

x
+
1

α
t

z
t
x_t=\sqrt{\overline{\alpha_t}} x_0+\sqrt{1-\overline{\alpha_t}} z_t
xt=αtx0+1αtzt
,我们可以使用
x
t
x_t
xt
反向估计
x
x_0
x0
得到
x
x_0
x0
满足分布
x
=
1
α
ˉ
t
(
x
t

1

α
ˉ
t
z
t
)
x_0=\frac{1}{\sqrt{\bar{\alpha}_t}}\left(\mathrm{x}_t-\sqrt{1-\bar{\alpha}_t} z_t\right)
x0=αˉt1(xt1αˉtzt)
。最终得到均值为
μ
~
t
=
1
a
t
(
x
t

β
t
1

a
ˉ
t
z
t
)
\tilde{\mu}_t=\frac{1}{\sqrt{a_t}}\left(x_t-\frac{\beta_t}{\sqrt{1-\bar{a}_t}} z_t\right)
μ~t=at1(xt1aˉtβtzt)

z
t
z_t
zt
代表t时刻的噪音是什么。由
z
t
z_t
zt
无法直接获得,网络便通过当前时刻的
x
t
x_t
xt
经过神经网络计算
z
t
z_t
zt

ϵ
θ
(
x
t
,
t
)
\epsilon_\theta\left(x_t, t\right)
ϵθ(xt,t)
也就是上面提到的
z
t
z_t
zt

ϵ
θ
\epsilon_\theta
ϵθ
代表神经网络。

x
t

1
=
1
α
t
(
x
t

1

α
t
1

α
ˉ
t
ϵ
θ
(
x
t
,
t
)
)
+
σ
t
z
x_{t-1}=\frac{1}{\sqrt{\alpha_t}}\left(x_t-\frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta\left(x_t, t\right)\right)+\sigma_t z
xt1=αt1(xt1αˉt1αtϵθ(xt,t))+σtz

由于加噪过程中的真实噪声
ϵ
\epsilon
ϵ
在复原过程中是无法获得的,因此DDPM的关键就是训练一个由
x
t
x_t
xt

t
t
t
估测橾声的模型
ϵ
θ
(
x
t
,
t
)
\epsilon_\theta\left(x_t, t\right)
ϵθ(xt,t)
,其中
θ
\theta
θ
就是模型的训练参数,
σ
t
\sigma_t
σt
也是一个高斯噪声
σ
t

N
(
,
1
)
\sigma_t \sim N(0,1)
σtN(0,1)
,用于表示估测与实际的差距。在DDPM中,使用U-Net作为估测噪声的模型。

本质上,我们就是训练这个Unet模型,该模型输入为
x
t
x_t
xt

t
t
t
,输出为
x
t
x_t
xt
时刻的高斯噪声。即利用
x
t
x_t
xt

t
t
t
预测这一时刻的高斯噪声。这样就可以一步一步的再从噪声回到真实图像。

二、DDPM网络的构建(Unet网络的构建)

Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成
上图是典型的Unet模型结构,仅仅作为示意图,里面具体的数字同学们无需在意,和本文的学习无关。在本文中,Unet的输入和输出shape相同,通道均为3(一般为RGB三通道),宽高相同。

本质上,DDPM最重要的工作就是训练Unet模型,该模型输入为
x
t
x_t
xt

t
t
t
,输出为
x
t

1
x_{t-1}
xt1
时刻的高斯噪声。即利用
x
t
x_t
xt

t
t
t
预测上一时刻的高斯噪声。这样就可以一步一步的再从噪声回到真实图像。

假设我们需要生成一个[64, 64, 3]的图像,在
t
t
t
时刻,我们有一个
x
t
x_t
xt
噪声图,该噪声图的的shape也为[64, 64, 3],我们将它和
t
t
t
一起输入到Unet中。Unet的输出为
x
t

1
x_{t-1}
xt1
时刻的[64, 64, 3]的噪声。

实现代码如下,代码中的特征提取模块为残差结构,方便优化:

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def get_norm(norm, num_channels, num_groups):
    if norm == "in":
        return nn.InstanceNorm2d(num_channels, affine=True)
    elif norm == "bn":
        return nn.BatchNorm2d(num_channels)
    elif norm == "gn":
        return nn.GroupNorm(num_groups, num_channels)
    elif norm is None:
        return nn.Identity()
    else:
        raise ValueError("unknown normalization type")
#------------------------------------------#
#   计算时间步长的位置嵌入。
#   一半为sin,一半为cos。
#------------------------------------------#
class PositionalEmbedding(nn.Module):
    def __init__(self, dim, scale=1.0):
        super().__init__()
        assert dim % 2 == 0
        self.dim = dim
        self.scale = scale
    def forward(self, x):
        device      = x.device
        half_dim    = self.dim // 2
        emb = math.log(10000) / half_dim
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        # x * self.scale和emb外积
        emb = torch.outer(x * self.scale, emb)
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb
#------------------------------------------#
#   下采样层,一个步长为2x2的卷积
#------------------------------------------#
class Downsample(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.downsample = nn.Conv2d(in_channels, in_channels, 3, stride=2, padding=1)
    def forward(self, x, time_emb, y):
        if x.shape[2] % 2 == 1:
            raise ValueError("downsampling tensor height should be even")
        if x.shape[3] % 2 == 1:
            raise ValueError("downsampling tensor width should be even")
        return self.downsample(x)
#------------------------------------------#
#   上采样层,Upsample+卷积
#------------------------------------------#
class Upsample(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.upsample = nn.Sequential(
            nn.Upsample(scale_factor=2, mode="nearest"),
            nn.Conv2d(in_channels, in_channels, 3, padding=1),
        )
    def forward(self, x, time_emb, y):
        return self.upsample(x)
#------------------------------------------#
#   使用Self-Attention注意力机制
#   做一个全局的Self-Attention
#------------------------------------------#
class AttentionBlock(nn.Module):
    def __init__(self, in_channels, norm="gn", num_groups=32):
        super().__init__()
        self.in_channels = in_channels
        self.norm = get_norm(norm, in_channels, num_groups)
        self.to_qkv = nn.Conv2d(in_channels, in_channels * 3, 1)
        self.to_out = nn.Conv2d(in_channels, in_channels, 1)
    def forward(self, x):
        b, c, h, w  = x.shape
        q, k, v     = torch.split(self.to_qkv(self.norm(x)), self.in_channels, dim=1)
        q = q.permute(0, 2, 3, 1).view(b, h * w, c)
        k = k.view(b, c, h * w)
        v = v.permute(0, 2, 3, 1).view(b, h * w, c)
        dot_products = torch.bmm(q, k) * (c ** (-0.5))
        assert dot_products.shape == (b, h * w, h * w)
        attention   = torch.softmax(dot_products, dim=-1)
        out         = torch.bmm(attention, v)
        assert out.shape == (b, h * w, c)
        out         = out.view(b, h, w, c).permute(0, 3, 1, 2)
        return self.to_out(out) + x
#------------------------------------------#
#   用于特征提取的残差结构
#------------------------------------------#
class ResidualBlock(nn.Module):
    def __init__(
        self, in_channels, out_channels, dropout, time_emb_dim=None, num_classes=None, activation=F.relu,
        norm="gn", num_groups=32, use_attention=False,
    ):
        super().__init__()
        self.activation = activation
        self.norm_1 = get_norm(norm, in_channels, num_groups)
        self.conv_1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)
        self.norm_2 = get_norm(norm, out_channels, num_groups)
        self.conv_2 = nn.Sequential(
            nn.Dropout(p=dropout), 
            nn.Conv2d(out_channels, out_channels, 3, padding=1),
        )
        self.time_bias  = nn.Linear(time_emb_dim, out_channels) if time_emb_dim is not None else None
        self.class_bias = nn.Embedding(num_classes, out_channels) if num_classes is not None else None
        self.residual_connection    = nn.Conv2d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity()
        self.attention              = nn.Identity() if not use_attention else AttentionBlock(out_channels, norm, num_groups)
    def forward(self, x, time_emb=None, y=None):
        out = self.activation(self.norm_1(x))
        # 第一个卷积
        out = self.conv_1(out)
        # 对时间time_emb做一个全连接,施加在通道上
        if self.time_bias is not None:
            if time_emb is None:
                raise ValueError("time conditioning was specified but time_emb is not passed")
            out += self.time_bias(self.activation(time_emb))[:, :, None, None]
        # 对种类y_emb做一个全连接,施加在通道上
        if self.class_bias is not None:
            if y is None:
                raise ValueError("class conditioning was specified but y is not passed")
            out += self.class_bias(y)[:, :, None, None]
        out = self.activation(self.norm_2(out))
        # 第二个卷积+残差边
        out = self.conv_2(out) + self.residual_connection(x)
        # 最后做个Attention
        out = self.attention(out)
        return out
#------------------------------------------#
#   Unet模型
#------------------------------------------#
class UNet(nn.Module):
    def __init__(
        self, img_channels, base_channels=128, channel_mults=(1, 2, 2, 2),
        num_res_blocks=2, time_emb_dim=128 * 4, time_emb_scale=1.0, num_classes=None, activation=F.silu,
        dropout=0.1, attention_resolutions=(1,), norm="gn", num_groups=32, initial_pad=0,
    ):
        super().__init__()
        # 使用到的激活函数,一般为SILU
        self.activation = activation
        # 是否对输入进行padding
        self.initial_pad = initial_pad
        # 需要去区分的类别数
        self.num_classes = num_classes
        # 对时间轴输入的全连接层
        self.time_mlp = nn.Sequential(
            PositionalEmbedding(base_channels, time_emb_scale),
            nn.Linear(base_channels, time_emb_dim),
            nn.SiLU(),
            nn.Linear(time_emb_dim, time_emb_dim),
        ) if time_emb_dim is not None else None
        # 对输入图片的第一个卷积
        self.init_conv  = nn.Conv2d(img_channels, base_channels, 3, padding=1)
        # self.downs用于存储下采样用到的层,首先利用ResidualBlock提取特征
        # 然后利用Downsample降低特征图的高宽
        self.downs      = nn.ModuleList()
        self.ups        = nn.ModuleList()
        # channels指的是每一个模块处理后的通道数
        # now_channels是一个中间变量,代表中间的通道数
        channels        = [base_channels]
        now_channels    = base_channels
        for i, mult in enumerate(channel_mults):
            out_channels = base_channels * mult
            for _ in range(num_res_blocks):
                self.downs.append(
                    ResidualBlock(
                        now_channels, out_channels, dropout,
                        time_emb_dim=time_emb_dim, num_classes=num_classes, activation=activation,
                        norm=norm, num_groups=num_groups, use_attention=i in attention_resolutions,
                    )
                )
                now_channels = out_channels
                channels.append(now_channels)
            if i != len(channel_mults) - 1:
                self.downs.append(Downsample(now_channels))
                channels.append(now_channels)
        # 可以看作是特征整合,中间的一个特征提取模块
        self.mid = nn.ModuleList(
            [
                ResidualBlock(
                    now_channels, now_channels, dropout,
                    time_emb_dim=time_emb_dim, num_classes=num_classes, activation=activation,
                    norm=norm, num_groups=num_groups, use_attention=True,
                ),
                ResidualBlock(
                    now_channels, now_channels, dropout,
                    time_emb_dim=time_emb_dim, num_classes=num_classes, activation=activation, 
                    norm=norm, num_groups=num_groups, use_attention=False,
                ),
            ]
        )
        # 进行上采样,进行特征融合
        for i, mult in reversed(list(enumerate(channel_mults))):
            out_channels = base_channels * mult
            for _ in range(num_res_blocks + 1):
                self.ups.append(ResidualBlock(
                    channels.pop() + now_channels, out_channels, dropout, 
                    time_emb_dim=time_emb_dim, num_classes=num_classes, activation=activation, 
                    norm=norm, num_groups=num_groups, use_attention=i in attention_resolutions,
                ))
                now_channels = out_channels
            if i != 0:
                self.ups.append(Upsample(now_channels))
        assert len(channels) == 0
        self.out_norm = get_norm(norm, base_channels, num_groups)
        self.out_conv = nn.Conv2d(base_channels, img_channels, 3, padding=1)
    def forward(self, x, time=None, y=None):
        # 是否对输入进行padding
        ip = self.initial_pad
        if ip != 0:
            x = F.pad(x, (ip,) * 4)
        # 对时间轴输入的全连接层
        if self.time_mlp is not None:
            if time is None:
                raise ValueError("time conditioning was specified but tim is not passed")
            time_emb = self.time_mlp(time)
        else:
            time_emb = None
        if self.num_classes is not None and y is None:
            raise ValueError("class conditioning was specified but y is not passed")
        # 对输入图片的第一个卷积
        x = self.init_conv(x)
        # skips用于存放下采样的中间层
        skips = [x]
        for layer in self.downs:
            x = layer(x, time_emb, y)
            skips.append(x)
        # 特征整合与提取
        for layer in self.mid:
            x = layer(x, time_emb, y)
        # 上采样并进行特征融合
        for layer in self.ups:
            if isinstance(layer, ResidualBlock):
                x = torch.cat([x, skips.pop()], dim=1)
            x = layer(x, time_emb, y)
        # 上采样并进行特征融合
        x = self.activation(self.out_norm(x))
        x = self.out_conv(x)
        if self.initial_pad != 0:
            return x[:, :, ip:-ip, ip:-ip]
        else:
            return x

三、Diffusion的训练思路

Diffusion的训练思路比较简单,首先随机给每个batch里每张图片都生成一个t,代表我选择这个batch里面第t个时刻的噪声进行拟合。代码如下:

t = torch.randint(0, self.num_timesteps, (b,), device=device)

生成batch_size个噪声,计算施加这个噪声后模型在t个时刻的噪声图片是怎么样的,如下所示:

def perturb_x(self, x, t, noise):
    return (
        extract(self.sqrt_alphas_cumprod, t,  x.shape) * x +
        extract(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * noise
    )   
def get_losses(self, x, t, y):
    # x, noise [batch_size, 3, 64, 64]
    noise           = torch.randn_like(x)
    perturbed_x     = self.perturb_x(x, t, noise)

之后利用这个噪声图片、t和网络模型计算预测噪声,利用预测噪声和实际噪声进行拟合。

def get_losses(self, x, t, y):
    # x, noise [batch_size, 3, 64, 64]
    noise           = torch.randn_like(x)
    perturbed_x     = self.perturb_x(x, t, noise)
    estimated_noise = self.model(perturbed_x, t, y)
    if self.loss_type == "l1":
        loss = F.l1_loss(estimated_noise, noise)
    elif self.loss_type == "l2":
        loss = F.mse_loss(estimated_noise, noise)
    return loss

利用DDPM生成图片

DDPM的库整体结构如下:
Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成

一、数据集的准备

在训练前需要准备好数据集,数据集保存在datasets文件夹里面。
Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成

二、数据集的处理

打开txt_annotation.py,默认指向根目录下的datasets。运行txt_annotation.py。
此时生成根目录下面的train_lines.txt。
Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成

三、模型训练

在完成数据集处理后,运行train.py即可开始训练。
Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成
训练过程中,可在results文件夹内查看训练效果:
Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。